

A Guide for Home Learning CLIC 13

Introduction - CLIC 13

In school, each week, children complete a CLIC challenge. The answers that they provide tell their teacher what skils they understand and allow teachers to focus on teaching the skills that they don't (as well as new skills that will be taught). If your child completes their challenges online at school, you may have been sent a link to log on at home. This pupil log on only allows children to complete one challenge a week. We are currently building a new pupil area, which will help with home learning.

This guide provides you with a copy of a CLIC challenge, a description of the skill each question is challenging and some sample resources for each question to help with home learning. (A description of each of these resources is on the next page.) The key is to keep it fun, no pressure and limit the time to less than 20 minutes a day, unless your child wants to carry on!

Please seek and follow advice from your child's teacher and school!

What skill does each question challenge?

Question 1

I can partition a 2 dp number

Question 2

I can understand 4d numbers

Question 3

I can count in 9s

Question 4

10s / 20s / 50s / 250s

Question 5

I can still count along for all of Count Fourways' challenges

Question 6

I can find the missing piece to 1000

Question 7

I can multiply whole numbers by 100

Question 8

I can solve any $1 d \times 1 d$

Question 9

I can solve any 4d - 2d or 3d
Question 10
I can solve $2 \mathrm{~d} \div 1 \mathrm{~d}$ (using $\times 2,3,4,5$) with no remainders in the answer

Remember To's

Every step of learning (skill) in Big Maths has 'Remember to...'s. These are simple reminders for children to 'Remember to' do this, this, etc...

In Big Maths, we have divided complicated skills into small steps, provided 'Remember to...'s and examples to keep it simple for children.

A Progress Drive is a collection of skill steps that progress a child's learning to the point of mastering the larger objective.

Repeat Sheets

Repeat sheets contain a number of questions (usually 10) that you can use for repeat practice of a particular step. Please feel free to create your own repeat questions to avoid children simply memorising the questions and answers.

Revisit Sheets

Revisit sheets contain a number of questions (usually 10) that you can use which include a unit of measure applied to the numbers (It's Nothing New!) of a particular step. Please feel free to create your own revisit questions to avoid children simply memorising the questions and answers.

Real Life Maths Sheets

Real Life Maths sheets contain a number of questions (usually 5) where the questions have been placed into worded scenarios for a particular step, increasing the complexity and challenge further. Please feel free to create your own real life maths questions to avoid children simply memorising the questions and answers.

Select Sheets

Select sheets contain a number of worded questions (usually 5) which no longer automatically relate to the step we are on. These increase the complexity and challenge further still. Please feel free to create your own select questions to avoid children
simply memorising the questions and answers.

CLIC 13

The following CLIC challenge is an example for you to use to practice at home. We have included the answer sheet as well. Please feel free to create your own additional questions by changing the numbers for any that your child gets wrong. In this pack, there is additional advice for each question, with resources that can help with home learning. It is important that you use the correct challenge level as provided by your teacher.

Question Practice Resources

Question 1 - I can partition a number with 2 decimal places

Remember to:

- write the number
- draw the sticks
- copy the units digit
- copy the tenths digit... with a 'zero-point' in front of it
- copy the hundredths digit...
with a 'zero-point-zero' in front of it

Repeat Questions

Remember to:

- write the number
- draw the sticks
- copy the units digit
- copy the tenths digit... with 'zero-point' in front of it
- copy the hundredths digit... with 'zero-point-zero' in front of it
Ezample

(1) Partition 5.63
(3) Partition 6.26
(4) Partition 9.65
(8) Partition 5.92
(10) Partition 3.42
(9) Partition 8.58
(7) Partition 7.32

2) Partition 1.73
(5) Partition 4.63
3) Partition 2.27

Remember to:

- write the number
- draw the sticks
- copy the units digit
- copy the tenths digit... with 'zero-point' in front of it
- copy the hundredths digit... with 'zero-point-zero' in front of it
Tromple

(1) $5,0.6,0.03$
(3) $6,0.2,0.06$
(4) $9,0.6,0.05$
(5) $4,0.6,0.03$
(6) $2,0.2,0.07$
(8) $5,0.9,0.02$
(9) $8,0.5,0.08$
(10) $3,0.4,0.02$

Question Practice Resources

Question 2 - I understand 4 digit numbers

Remember to:

- order the numbers by their thousands digit
- then, if they have the same thousands digit, order by the hundreds digit
- then, if they have the same hundreds digit, order by the tens digit
- then, if they have the same tens digit, order by the units digit

Repeat Questions

Step

5

I can understand 4d numbers

Remember To:

- order the numbers by their thousands digit
- then, if they have the same thousands digit, order by the hundreds digit
- then, if they have the same hundreds digit, order by the tens digit
- then, if they have the same tens digit, order by the units digit

4

5400, 5500, 5300, 5200

6) 1235, 2450, 1150, 3750

8

> 3000, 2999, 3999,5100

10

> 9999, 9998, 9978,9943

Step 5

Mastery of Numbers

I can understand 4d numbers

Remember To:

- order the numbers by their thousands digit
- then, if they have the same thousands digit, order by the hundreds digit
- then, if they have the same hundreds digit, order by the tens digit
- then, if they have the same tens digit, order by the units digit

2
6741, 6743,
6744, 6745

4
5200, 5300,
5400, 5500

7

6509, 6511,
 6513, 6515

3200, 4500, 6000, 7000

2615, 2620, 2630, 2650

5

> 1452,1678,
> 6789,9000

9872, 9873, 9874,9875

1150, 1235,
2450, 3750

8
2999, 3000, 3999, 5000

10

9943, 9978,
 9998, 9999

Revisit Questions

Step

5

I can understand 4d numbers

$5400 \mathrm{~m}, 5500 \mathrm{~m}$, $5300 \mathrm{~m}, 5200 \mathrm{~m}$

1235km, 2450km, $1150 \mathrm{~km}, 3750 \mathrm{~km}$

3000mg, 2999 mg , 3999mg, 5100mg

7. $9999 \mathrm{ml}, 9998 \mathrm{ml}$, $9978 \mathrm{ml}, 9943 \mathrm{ml}$

Remember To:

- order the numbers by their thousands digit
- then, if they have the same thousands digit, order by the hundreds digit
- then, if they have the same hundreds digit, order by the tens digit
- then, if they have the same tens digit, order by the units digit

2

> 6745 cm
> 6743 cm $6744 \mathrm{~cm}, 6741 \mathrm{~cm}$

4

$1452 \mathrm{~g}, 1678 \mathrm{~g}$, 9000g, 6789g

6 9875L, 9874L, 9873L, 9872L

8

2650s, 2620s, 2630s, 2615s

Revisit Answers

Step

 5Mastery of Numbers

I can understand 4 d numbers

$5200 \mathrm{~m}, 5300 \mathrm{~m}$, $5400 \mathrm{~m}, 5500 \mathrm{~m}$

3
9872km, 9873km,
9874km, 9875km

Remember To:

- order the numbers by their thousands digit
- then, if they have the same thousands digit, order by the hundreds digit
- then, if they have the same hundreds digit, order by the tens digit
- then, if they have the same tens digit, order by the units digit

2

4

6

1150L, 1235L,
2450L, 3750L

3999mg, 5000mg
 2999 mg , 3000 mg ,

 m
9943 ml , 9978 ml , $9998 \mathrm{ml}, 9999 \mathrm{ml}$

$3200 \mathrm{~mm}, 4500 \mathrm{~mm}$, $6000 \mathrm{~mm}, 7000 \mathrm{~mm}$

> 6741 cm, 6743 cm, $6744 \mathrm{~cm}, 6745 \mathrm{~cm}$

 6741 cm ,

 6741 cm , 6743 cm , 6743 cm , $6744 \mathrm{~cm}, 6745 \mathrm{~cm}$

 $6744 \mathrm{~cm}, 6745 \mathrm{~cm}$}
1452g, 1678g, 6789g, 9000g

2615s, 2620s, 2630s, 2650s

10

6509 kg , 6511 kg , 6513kg, 6515kg

Question Practice Resources

Question 3 - I can count in 9s

Repeat Questions

Step
 9
 Counting Multiples

I can count in 9s

Fromple

```
9 18 27
```

(1) 9,18 ,
(2) 126, 135,
(3) 27,36 ,
(4) 45,54 ,
(5) 90,99,
(6) 153,162 ,
(7) 63,72 ,
(8) 360,369 ,
(9) 180, 189,
(10) 261, 270,

Repeat Answers

Step
 9
 Counting Multiples

I can count in 9 s

Frzample

```
9 18 27
```

(1) $9,18,27,36,45$
(2) $126,135,144,153,162$
(3) $27,36,45,54,63$
(4) $45,54,63,72,81$
(5) $90,99,108,117,126$
(6) $153,162,171,180,189$
(7) $63,72,81,90,99$
(8) $\mathbf{3 6 0}, \mathbf{3 6 9}, 378,387,396$
(9) $180,189,198,207,216$
(10) $261,270,279,288,297$

Ezamiple
(1) $\mathbf{4 5} \mathbf{g}, \mathbf{5 4}$,
(2) $126 \mathrm{~cm}, 135 \mathrm{~cm}$,
(3) $153 \mathrm{~L}, 162 \mathrm{~L}$,
(4) $9 \mathrm{~m}, 18 \mathrm{~m}$,
(5) $\mathbf{3 6 0}, \mathbf{3 6 9}$,
(6) $27 \mathrm{~km}, 36 \mathrm{~km}$,
(7) $63 \mathrm{ml}, 72 \mathrm{ml}$,
(9) $180 \mathrm{~mm}, 189 \mathrm{~mm}$,
(10) $261 \mathrm{~kg}, 270 \mathrm{~kg}$,

maths Revisit Questions

Ezamiple

```
9 1-18 27
```45g, 54g, 63g, 72g, 81g
(3) 153l, 162l, 171l, 180l, 189!
(5)

360s, 369s, 378s, 387s, 396s
(7) \(63 \mathrm{ml}, 72 \mathrm{ml}, 81 \mathrm{ml}\), \(90 \mathrm{ml}, 99 \mathrm{ml}\)
\(180 \mathrm{~mm}, 189 \mathrm{~mm}\),
(9) \(198 \mathrm{~mm}, 207 \mathrm{~mm}\), 216 mm
(6) \(27 \mathrm{~km}, 36 \mathrm{~km}, 45 \mathrm{~km}\),
(6) \(54 \mathrm{~km}, 63 \mathrm{~km}\)
(2) \(126 \mathrm{~cm}, 135 \mathrm{~cm}, 144 \mathrm{~cm}\), \(153 \mathrm{~cm}, 162 \mathrm{~cm}\)
(4) \(9 \mathrm{~m}, 18 \mathrm{~m}, 27 \mathrm{~m}, 36 \mathrm{~m}\), 45m
(8) \(90 \mathrm{mg}, 99 \mathrm{mg}, 108 \mathrm{mg}\), \(117 \mathrm{mg}, 126 \mathrm{mg}\)

261kg, 270kg, 279kg, 288kg, 297kg

\section*{Question Practice Resources}

Question \(4-\quad \mid\) can in \(10 \mathrm{~s}, 20 \mathrm{~s}, 50\) s and 250 s

\section*{Repeat Questions}

(1) \(\mathbf{1 0}, 20\),
(2) 80,90 ,
(3) 160,170 ,
(4) 240,250 ,
(5) 310,320 ,
(6) 440,450 ,
(7) 750,760 ,
(8) 820,830 ,
(9) 940,950 ,
(10) 660, 670,

\section*{- Maths Repeat Answers}

(1) \(\mathbf{1 0}, \mathbf{2 0}, 30,40,50\)
(3) \(\mathbf{1 6 0} \mathbf{2 0 0}, 170,180,190\),
(5) \(\begin{aligned} & 310,320,330,340, \\ & 350\end{aligned}\)
(7) \(750,760,770,780\),
(9) \(940,950,960,970\), 980
(2) \(80,90,100,110,120\)
(4) \(240,250,260,270\),
(6) \(440,450,460,470\), 480
(8) \(820,830,840,850\), 860
(10) 660, 670, 680, 690, 700

\section*{Repeat Questions}

(1) \(\mathbf{6 0}, \mathbf{8 0}\),
(2) 160,180 ,
(3) 200,220 ,
(4) 360,380 ,
(5) 520,540,
(6) \(\mathbf{2 8 0}, \mathbf{3 0 0}\),
(7) 760,780,
(8) 440,460 ,
(9) \(\mathbf{8 2 0}, \mathbf{8 4 0}\),
(10) 660, 680,

\section*{: Ment \\ Repeat Answers}

(1) \(60,80,100,120,140\)
(2) \(160,180,200,220\),
(3) \(200,220,240,260\),
(5) 520, 540, 560, 580, 600
(7) \(760,780,800,820\),
(9) \(820,840,860,880\),
(4) \(360,380,400,420\),
(6) \(\mathbf{2 8 0}, \mathbf{3 0 0}, 320,340\),
(8) \(440,460,480,500\), 520
(10) \(760,680,700,720\), 740

\section*{Repeat Questions}

(1) \(\mathbf{5 0}, \mathbf{1 0 0}\),
(2) 150, 200,
(3) 250,300 ,
(4) 750,800 ,
(5) \(\mathbf{4 0 0}, \mathbf{4 5 0}\),
(6) \(\mathbf{6 0 0}, \mathbf{6 5 0}\),
(7) 350,400 ,
(8) 1050,1100 ,
(9) 500,550 ,
(10) 900, 950,

\section*{B \\ Repeat Answers}

(1) \(\mathbf{5 0}, \mathbf{1 0 0}, \mathbf{1 5 0}, \mathbf{2 0 0}\)
\(\mathbf{2 5 0}\)
(3) \(\mathbf{2 5 0}, \mathbf{3 0 0}, 350,400\),
(5) \(400,450,500,550\), 600
(7) \(350,400,450,500\), 550
(9) \(500,550,600,650\), 700
(2) \(\mathbf{1 5 0} 350\) 200, 250, 300,
(4) \(750,800,850,900\), 950
(6) \(\mathbf{6 0 0}, \mathbf{6 5 0}, 700,750\), 800
(8) \(1050,1100,1150\), 1200, 1250
(10) 900, 950, 1000, 1050, 1100

\section*{Repeat Questions}

(1) \(\mathbf{0}, \mathbf{2 5 0}\),
(3) 1500,1750 ,
(5) \(\mathbf{3 0 0 0}, \mathbf{3 2 5 0}\),
(6) 4500,4750 ,
(7) 6000, 6250,
(8) \(\mathbf{7 2 5 0}, \mathbf{7 5 0 0}\),
(9) 10250, 10500,
(10) 12000, 12250,

\section*{Bem \\ Repeat Answers}

(1) \(\mathbf{0}, \mathbf{2 5 0}, \mathbf{5 0 0}, \mathbf{7 5 0}\)
\(\mathbf{1 0 0 0}\)
(3) \(1500,1750,2000\), 2250, 2500
(5) \(\mathbf{3 0 0 0}, \mathbf{3 2 5 0}, \mathbf{3 5 0 0}\), 3750, 4000
(7) 6000, 6250, 6500, 6750, 7000
(9) \(10250,10500,10750\), 11000, 11500
(8) \(\mathbf{7 2 5 0}, \mathbf{7 5 0 0}, \mathbf{7 7 5 0}\), 8000, 8250
(2) \(750,1000,1250\), 1500, 1750
(4) \(2250,2500,2750\), 3000, 3250
(6) \(4500,4750,5000\), 5250, 5500
(10) 12000, 12250, 12500, 12750, 13000

\section*{: Ment \\ Revisit Questions}

(1) \(\mathbf{1 0} \mathrm{m}, \mathbf{2 0} \mathrm{m}\),
(3) \(160 \mathrm{~km}, 170 \mathrm{~km}\),
(5) \(310 \mathrm{mg}, 320 \mathrm{mg}\),
(7) \(750 \mathrm{ml}, 760 \mathrm{ml}\),
(8) \(820 \mathrm{~s}, 830 \mathrm{~s}\),
(9) \(\mathbf{9 4 0} \mathbf{m m}, \mathbf{9 5 0 m m}\),
(10) \(660 \mathrm{~kg}, 670 \mathrm{~kg}\),

\section*{: inche \\ Revisit Answers}

(1) \(\mathbf{1 0 m}, \mathbf{2 0 m}, 30 \mathrm{~m}\), \(40 \mathrm{~m}, 50 \mathrm{~m}\)

160km, 170km,
(3) \(180 \mathrm{~km}, 190 \mathrm{~km}\), 200km
\(310 \mathrm{mg}, 320 \mathrm{mg}\),
(5) \(330 \mathrm{mg}, 340 \mathrm{mg}\),

350 mg
(7) \(750 \mathrm{ml}, 760 \mathrm{ml}\),
\(770 \mathrm{ml}, 780 \mathrm{ml}, 790 \mathrm{ml}\)
\(940 \mathrm{~mm}, 950 \mathrm{~mm}\),
(9) \(960 \mathrm{~mm}, 970 \mathrm{~mm}\), 980 mm
(2) \(80 \mathrm{~cm}, 90 \mathrm{~cm}, 100 \mathrm{~cm}\),
\(110 \mathrm{~cm}, 120 \mathrm{~cm}\)
(4) \(\mathbf{2 4 0 g}, \mathbf{2 5 0 g}, 260 \mathrm{~g}\),
(6) \(440 \mathrm{~L}, 450 \mathrm{~L}, 460 \mathrm{~L}\), 470L, 480L
(8) \(820 \mathrm{~s}, 830 \mathrm{~s}, 840 \mathrm{~s}\), 850s, 860s
(10) \(660 \mathrm{~kg}, 670 \mathrm{~kg}\), \(680 \mathrm{~kg}, 690 \mathrm{~kg}, 700 \mathrm{~kg}\)

\section*{BMent \\ Revisit Questions}

(1) \(\mathbf{6 0 m}, 80 \mathrm{~m}\),
(3) \(\mathbf{2 0 0 k m}, \mathbf{2 2 0 k m}\),
(5) \(\mathbf{5 2 0 m g}, \mathbf{5 4 0 m g}\),
(7) \(760 \mathrm{ml}, 780 \mathrm{ml}\),
(8) \(\mathbf{4 4 0 s}, \mathbf{4 6 0 s}\),
(9) \(\mathbf{8 2 0} \mathrm{mm}, \mathbf{8 4 0} \mathrm{mm}\),
(10) \(\mathbf{6 6 0 k g}, 680 \mathrm{~kg}\),

\section*{: Ment \\ Revisit Answers}

(1) \(\mathbf{6 0 m}, \mathbf{8 0 m}, \mathbf{1 0 0 m}\),

200km, 220km,
(3) \(240 \mathrm{~km}, 260 \mathrm{~km}\), 280 km
\(520 \mathrm{mg}, 540 \mathrm{mg}\),
(5) \(560 \mathrm{mg}, 580 \mathrm{mg}\), 600 mg
(7) \(\mathbf{7 6 0 m l}, 780 \mathrm{ml}\),
\(800 \mathrm{ml}, 820 \mathrm{ml}, 840 \mathrm{ml}\)
\(820 \mathrm{~mm}, 840 \mathrm{~mm}\),
(9) \(860 \mathrm{~mm}, 880 \mathrm{~mm}\), 900 mm
\(160 \mathrm{~cm}, 180 \mathrm{~cm}\),
(2) \(200 \mathrm{~cm}, 220 \mathrm{~cm}\), 240 cm
\(360 \mathrm{~g}, 380 \mathrm{~g}, 400 \mathrm{~g}\),
\(420 \mathrm{~g}, 440 \mathrm{~g}\)
(6) \(280 \mathrm{~L}, 300 \mathrm{~L}, 320 \mathrm{~L}\), 340L, 360L

440s, 460s, 480s,
(8) \(500 \mathrm{~s}, 520 \mathrm{~s}\)

\section*{BMant \\ Revisit Questions}

(1) \(\mathbf{7 5 0 g}, 800 \mathrm{~g}\),
(3) \(600 \mathrm{~L}, 650 \mathrm{~L}\),
(4) \(50 \mathrm{~m}, \mathbf{1 0 0} \mathrm{~m}\),
(5) 1050s, 1100s,
(7) \(\mathbf{3 5 0 m l}, 400 \mathrm{ml}\),
(9) \(\mathbf{5 0 0} \mathrm{mm}, \mathbf{5} 50 \mathrm{~mm}\),
(10) \(900 \mathrm{~kg}, 950 \mathrm{~kg}\),
(8) \(400 \mathrm{mg}, \mathbf{4 5 0 m g}\),

\section*{Revisit Answers}

(1) \(\mathbf{7 5 0 g}, 800 \mathrm{~g}, \mathbf{8 5 0 g}\), 900g, 950g
(3) \(\mathbf{6 0 0 L}, 650 \mathrm{~L}, 700 \mathrm{~L}\), 750L, 800L
(5) 1050s, 1100s, 1150s, 1200s, 1250s
(7) \(350 \mathrm{ml}, 400 \mathrm{ml}\), \(450 \mathrm{ml}, 500 \mathrm{ml}, 550 \mathrm{ml}\)
\(500 \mathrm{~mm}, 550 \mathrm{~mm}\),
(9) \(600 \mathrm{~mm}, 650 \mathrm{~mm}\), 700 mm
\(150 \mathrm{~cm}, 200 \mathrm{~cm}\),
(2) \(250 \mathrm{~cm}, 300 \mathrm{~cm}\), 350 cm
(4) \(\mathbf{5 0 m}, \mathbf{1 0 0 m}, 150 \mathrm{~m}\),

250km, 300km,
(6) \(350 \mathrm{~km}, 400 \mathrm{~km}\), 450km

400 mg , 450 mg ,
(8) \(500 \mathrm{mg}, 550 \mathrm{mg}\), 600 mg

900kg, 950kg,
(10) 1000 kg ,

1050kg,1100kg

Revisit Questions

(1) \(0 \mathrm{~m}, \mathbf{2 5 0} \mathrm{~m}\),
(2) \(750 \mathrm{~cm}, 1000 \mathrm{~cm}\),
(3) \(1500 \mathrm{~km}, 1750 \mathrm{~km}\),
(5) \(3000 \mathrm{mg}, 3250 \mathrm{mg}\),
(6) \(4500 \mathrm{~L}, 4750 \mathrm{~L}\),
(7) \(6000 \mathrm{ml}, 6250 \mathrm{ml}\),
(8) \(\boldsymbol{7 2 5 0 s}, \boldsymbol{7 5 0 0 s}\),
(9) \(10250 \mathrm{~mm}, 10500 \mathrm{~mm}\),
(10) \(12000 \mathrm{~kg}, 12250 \mathrm{~kg}\),

\section*{Revisit Answers}

(1) \(\mathbf{0 m}, \mathbf{2 5 0 m}, \mathbf{5 0 0 m}\),

1500km, 1750km,
(3) \(2000 \mathrm{~km}, 2250 \mathrm{~km}\), 2500 km

3000 mg , 3250 mg ,
(5) \(3500 \mathrm{mg}, 3750 \mathrm{mg}\), 4000 mg
\(6000 \mathrm{ml}, 6250 \mathrm{ml}\),
(7) \(6500 \mathrm{ml}, 6750 \mathrm{ml}\), 7000 ml

10250 mm ,
(9) \(10500 \mathrm{~mm}, 10750 \mathrm{~mm}\), \(11000 \mathrm{~mm}, 11500 \mathrm{~mm}\)
\(750 \mathrm{~cm}, 1000 \mathrm{~cm}\),
(2) \(1250 \mathrm{~cm}, 1500 \mathrm{~cm}\),

1750 cm
(4) \(\mathbf{2 2 5 0} \mathrm{g}, \mathbf{2 5 0 0} \mathrm{g}\),
\(2750 \mathrm{~g}, 3000 \mathrm{~g}, 3250 \mathrm{~g}\)
(6) \(4500 \mathrm{~L}, 4750 \mathrm{~L}\),

5000L, 5250L, 5500L

7250s, 7500s, 7750s, 8000s, 8250s

12000kg, 12250kg,
(10) \(12500 \mathrm{~kg}, 12750 \mathrm{~kg}\), 13000 kg

\section*{Question Practice Resources}

Question 5 - I can still count along for all of Count Fourways' challenges

\section*{Question 5}

This question challenges a child's ability to still count along for all of Count Fourways' challenges.

There is no new skill to be mastered here, it is just the confirmation that the child has the ability to cope with unlabelled divisions with number lines in context from all of the four ways discussed, and for all steps of progression.

Once the child has this skill, then we can ask them to find another number on the number line using this skill, and then, if their calculation ability allows, find the gap (difference) between the 2 values.

\section*{Question Practice Resources}

\section*{Question 6 - I can find the missing piece to 1000}

\section*{Remember to:}
- make the units digits total 10
- make the tens digits total 9
- make the hundreds digits total 9

\section*{Repeat Questions}

Remember to:
- make the units digits total 10
- make the tens digits total 9

- make the hundreds digit total 9

\section*{= 1000}
(1) \(\mathbf{1 8 5}+\square=\mathbf{1 0 0 0}\)
(2) \(\square+\mathbf{8 8 6}=\mathbf{1 0 0 0}\)
(3) \(923+\square=1000\)
(4) \(738+\square=\mathbf{1 0 0 0}\)
(5) \(414+\square=1000\)
(6) \(583+\square=1000\)
(7) \(\square+489=1000\)
(8) \(\square+\mathbf{3 8 9}=\mathbf{1 0 0 0}\)
(9) \(\mathbf{2 4 1}+\square=\mathbf{1 0 0 0}\)
(10)
\(\square+194=1000\)

Remember to:
- make the units digits total 10
- make the tens digits total 9
- make the hundreds digit total 9

\section*{\(=1000\)}
(1) \(\mathbf{1 8 5}+815=1000\)
(2) \(114+\mathbf{8 8 6}=\mathbf{1 0 0 0}\)
(3) \(923+77=1000\)
(4) \(738+262=\mathbf{1 0 0 0}\)
(5) \(414+586=1000\)
(6) \(583+417=1000\)
(7) \(511+\mathbf{4 8 9}=\mathbf{1 0 0 0}\)
(8) \(611+389=1000\)
(9) \(241+759=1000\) (10) \(806+194=1000\)

Remember to:
- make the units digits total 10
- make the tens digits total 9
- make the hundreds digit total 9

= 1000
(1) \(185 \mathrm{~m}+\square=\mathbf{1 0 0 0} \mathrm{m}\)
(2) \(\square\) \(+886 \mathrm{~cm}=\) 1000 cm

(4) \(738 \mathrm{~g}+\square=\mathbf{1 0 0 0} \mathrm{g}\)
(5) \(414 \mathrm{mg}+\square=\) 1000 mg
(7) \(\square+489 \mathrm{ml}=\) 1000 ml
(8) \(\square+389 \mathrm{~s}=\mathbf{1 0 0 0} \mathrm{s}\)
(9) \(\begin{aligned} & 241 \mathrm{~mm}+\square= \\ & 1000 \mathrm{~mm}\end{aligned}=\)

\(\square\) \(+194 \mathrm{~kg}=1000 \mathrm{~kg}\)

Remember to:
- make the units digits total 10
- make the tens digits total 9
- make the hundreds digit total 9

= 1000
(1) \(185 m+815 m=1000 m\)
(2) \(\frac{114 \mathrm{~cm}}{1000 \mathrm{~cm}}+886 \mathrm{~cm}=\)
(3) \(923 \mathrm{~km}+77 \mathrm{~km}=\)
1000 km
(4) \(738 \mathrm{~g}+262 \mathrm{~g}=1000 \mathrm{~g}\)
(5) \(414 \mathrm{mg}+586 \mathrm{mg}=\) 1000 mg
(7) \(\frac{\sqrt{511 \mathrm{ml}}+489 \mathrm{ml}}{1000 \mathrm{ml}}=\)
(8) \(611 \mathrm{~s}+389 \mathrm{~s}=1000 \mathrm{~s}\)
(9) \(\begin{aligned} & 241 \mathrm{~mm}+759 \mathrm{~mm}= \\ & 1000 \mathrm{~mm}\end{aligned}\)
(10) \(\frac{806 \mathrm{~kg}}{1000 \mathrm{~kg}}+194 \mathrm{~kg}=\)

\section*{Real Life Maths Questions}

Step
INN: Number Bonds to 10
4

I can find the missing piece to 1000

\section*{Remember to:}
- make the (ones) units digits total 10
- make the tens digits total 9
- make the hundreds digit total 9

Mully has 294 pears. He wants 1000 pears. How many more pears does he need?
2) Pim wants \(£ \mathbf{1 0 0 0}\). He has \(£ 546\). How much more money does he need?

Speedy Col has a barrel containing 835L of water. The barrel can hold 1000L. How much liquid can she still pour in?

4
What is the missing piece: \(686+[\quad]=1000 ?\)

Pim has 371kg of sand. He needs 1000kg of sand. How much more sand does he need?

\section*{Real Life Maths Answers}

I can find the missing piece to 1000

\section*{Remember to:}
- make the (ones) units digits total 10
- make the tens digits total 9
- make the hundreds digit total 9

Mully has 294 pears. He wants 1000 pears. How many more pears does he need?

He needs 706 more pears.
2) Pim wants \(£ 1000\). He has \(£ 546\). How much more money does he need?

He needs \(£ 454\).

3
Speedy Col has a barrel containing 835L of water. The barrel can hold 1000L. How much liquid can she still pour in?

She can still pour in 165L of water.

4
What is the missing piece: \(686+[\quad]=1000 ?\)

The missing piece is 314.

5
Pim has 371 kg of sand. He needs 1000 kg of sand. How much more sand does he need?

He needs 629kg of sand.

\section*{Question Practice Resources}

\section*{Question 7 - I can multiply whole numbers by 100}

\section*{Remember to:}
- place 2 zeros on the units end
- remember that this moves the digits two places to the left
- remember that this makes the number 100 times bigger

\section*{Repeat Questions}

Step
2

I can multiply whole numbers by 100

\section*{Remember To:}
- place 2 zeros on the units end
- remember that this moves the digits two places to the left
- remember that this makes the number 100 times bigger

5) \(65 \times 100=\)

2. \(70 \times 100=\)

(10) \(26 \times 100=\)

Repeat Answers

Step
2

I can multiply whole numbers by 100

\section*{Remember To:}
- place 2 zeros on the units end
- remember that this moves the digits two places to the left
- remember that this makes the number 100 times bigger
\(\square\)
\(\square\)
5) \(65 \times 100=6500\)

2) \(\mathbf{7 0 \times 1 0 0}=\mathbf{7 0 0 0}\)
4) \(73 \times 100=7300\)

\section*{6. \(19 \times 100=1900\)}

10. \(26 \times 100=2600\)

Revisit Questions

Step
2

I can multiply whole numbers by 100

\section*{Remember To:}
- place 2 zeros on the units end
- remember that this moves the digits two places to the left
- remember that this makes the number 100 times bigger

5. \(65 \mathrm{mg} \times 100=\)

Revisit Answers

Step
2

I can multiply whole numbers by 100

\section*{Remember To:}
- place 2 zeros on the units end
- remember that this moves the digits two places to the left
- remember that this makes the number 100 times bigger
\(\square\)
(3) \(27 \mathrm{~km} \times 100=\) 2700 km
5) \(65 \mathrm{mg} \times 100=\) 6500 mg
6. \(19 \mathrm{~L} \times 100=1900 \mathrm{~L}\)

10 \(26 \mathrm{~kg} \times 100=2600 \mathrm{~kg}\)

\section*{Real Life Maths Questions}

\section*{Remember to:}
- place 2 zeros on the ones (units) end
- remember that this moves the digits two place to the left
- remember that this makes the number 100 times bigger

1
Pim has 12 boxes. Each box has 100 cherries. How many cherries are there in total?

There are 43 people at a party. Each person gets 100 g of sweets. How many grams of sweets are there in total?

3
A computer game costs \(£ 18\). I want to buy 100 copies. How much does that cost?

4
A box of rocks weighs 74 kg . There are 100 boxes. What is the total weight?

5
Pim has 59 jugs of water. Each jug contains 100 ml . How many millilitres of water is there in total?

\section*{Real Life Maths Answers}

\section*{Remember to:}
- place 2 zeros on the ones (units) end
- remember that this moves the digits two place to the left
- remember that this makes the number 100 times bigger

Pim has 12 boxes. Each box has 100 cherries. How many cherries are there in total?

There are 1200 cherries in total.

2
There are 43 people at a party. Each person gets 100 g of sweets. How many grams of sweets are there in total?

There are 4300 g of sweets.

3
A computer game costs \(£ 18\). I want to buy 100 copies. How much does that cost?

It Costs \(£ 1800\).

4
A box of rocks weighs 74 kg . There are 100 boxes. What is the total weight?

The total weight is 7400 kg .

5
Pim has 59 jugs of water. Each jug contains 100 ml . How many millilitres of water is there in total?

There is 5900 ml of water.

\section*{Question Practice Resources}

Question 8 - I can solve any 1 digit x 1 digit

\section*{Remember to:}
- Learn It!

\section*{Repeat Questions}

\section*{Remember To:}

Step
12
Multiplication

I can solve any \(1 \mathrm{~d} \times 1 \mathrm{~d}\)

5) \(1 \times 5=\)

9) \(5 \times 3=\)
2. \(3 \times 7=\)

6 \(5 \times 4=\)

(10) \(1 \times 6=\)

\section*{Repeat Answers}

\section*{Remember To:}

I can solve any \(1 d \times 1 d\)

\(\square\)
5) \(1 \times 5=5\)

9 \(5 \times 3=15\)
2) \(3 \times 7=21\)
\(\square\)
6) \(5 \times 4=20\)
8) \(2 \times 2=4\)
(10) \(1 \times 6=6\)

\section*{Remember To:}
- Learn It!

I can solve any \(1 \mathrm{~d} \times 1 \mathrm{~d}\)

5) \(7 \mathrm{mg} \times 5=\)

9) \(5 \times 3 \mathrm{~mm}=\)
2) \(3 \mathrm{~cm} \times 7=\)

6. \(5 \mathrm{~L} \times 4=\)
8. \(2 \mathrm{~s} \times 2=\)
10. \(5 \times 6 \mathrm{~kg}=\)

\section*{Remember To:}
- Learn It!

3) \(8 \times 2 \mathrm{~km}=16 \mathrm{~km}\)
5) \(7 \mathrm{mg} \times 5=35 \mathrm{mg}\)

\section*{Remember to:}
- Learn It!

I can solve any \(1 \mathrm{~d} \times 1 \mathrm{~d}\)

Pim has 8 boxes. Each box has 8 apples. How many apples are there in total?

2 There are 6 people at a party. Each person gets 7 sweets. How many sweets are there in total?

3 A box of tomatoes costs \(£ 8\). I want to buy 9 boxes. How much does that cost?

4 I have 6 boxes of pears. Each box weighs 9 kg . What is the total weight?

5 Pim has 8 jugs of water. Each jug contains 7L. How much is there in total?

\section*{Real Life Maths Answers}

\section*{Remember to:}
- Learn It!

Pim has 8 boxes. Each box has 8 apples. How many apples are there in total?

There are 64 apples in total.

2 There are 6 people at a party. Each person gets 7 sweets. How many sweets are there in total?

There are 42 sweets in total.

3 A box of tomatoes costs \(£ 8\). I want to buy 9 boxes. How much does that cost?

It costs \(£ 72\).

4 I have 6 boxes of pears. Each box weighs 9 kg . What is the total weight?
\[
\text { The total weight is } 54 \mathrm{~kg} \text {. }
\]

5
Pim has 8 jugs of water. Each jug contains 7L. How much is there in total?

There is 56L in total.

Select Questions

\section*{Remember To:}
- Learn It!

2

What is the total number of vertices on this set of wooden cubes?

3

Which is the odd one out?
\[
\begin{gathered}
(6 \times 9 \mathrm{Kg})+(7 \times 8 \mathrm{Kg}) \quad \frac{2}{3} \times 165 \mathrm{Kg} \\
\frac{1}{5} \text { of } 450 \mathrm{Kg}
\end{gathered}
\]

\section*{Select Answers}

\section*{Remember To:}
- Learn It!

I can solve any \(1 d \times 1 d\)

In pattern number eight there are 64 red dots and 48 blue dots.

There are 24 vertices on this set of wooden cubes.

3
\[
\frac{(6 \times 9 \mathrm{Kg})+(7 \times 8 \mathrm{Kg})}{\frac{1}{5} \text { of } 450 \mathrm{Kg}} \frac{\frac{2}{3} \times 165 \mathrm{Kg}}{}
\]

He will need to buy 9 packs of cup cakes.

Yes, the length of the line is 108 cm . To make a line of exactly 1 m Melissa would have to place 5 pens and 5 pencils back to back.

\section*{Question Practice Resources}

Question 9 - I can solve any 4 digit - 2 digit or 4 digit - 3 digit

Repeat Questions

Treaniple
\(\begin{array}{r}4171 \\ 8686 \\ 749 \\ 4937 \\ \hline\end{array}\)

\(\square\)
5) 1233-15
4. 6232-159
6. 1719-290

7 5342-80
9) 8866-54
(10) 1152-14

Repeat Answers

Troniple
\[
\begin{array}{r}
4171 \\
-\quad 768 \\
-\quad 749 \\
\hline 4937 \\
\hline
\end{array}
\]
\(\square\)
(3) \(8321-754=7567\)

5 \(1233-15=1218\)
75342-80 = 5262
9) 8866-54 = 8812

\section*{Question Practice Resources}

Question 10 - I can solve 2 digit \(\div 1\) digit
(using \(\times 2,3,4,5\)) with no remainders

\section*{Repeat Questions}

\section*{Division}

Column Methods

I can solve a \(2 d \div 1 d\) (using \(x\) \(2,3,4,5\)) No remainders inside the answer

5. \(95 \div 5\)

9) \(24 \div 3\)

Frosion er
\[
\begin{array}{r|r}
& 27 \\
3 \longdiv { 8 1 }
\end{array}
\]

4) \(36 \div 4\)

6 \(\quad 20 \div 4\)

8 \(28 \div 2\)
(10) \(40 \div 5\)

\section*{Repeat Answers}

\section*{Step \\ 2}

Division
Column Methods

I can solve a \(2 d \div 1 d\) (using \(x\) \(2,3,4,5\)) No remainders inside the answer
\(\square\)
(3) \(72 \div 2=36\)
5. \(95 \div 5=19\)

Frzample
\[
\begin{array}{r|r}
27 \\
3 & 81
\end{array}
\]
\(\square\)
\(\square\)
6) \(20 \div 4=5\)
8) \(28 \div 2=14\)
(10) \(40 \div 5=8\)```

